DNA Hybridization on Chitosan-Functionalized Silicon Substrate

Author(s): Amina Omar, El-Sayed M. El-Sayed, Mona S. Talaat, Medhat Ibrahim.

Journal Name: Medicinal Chemistry

Volume 12 , Issue 5 , 2016

Become EABM
Become Reviewer

Abstract:

The ability of DNA to capture oligonucleotide molecules in solution is of great importance in genetics, medical diagnostics, and drug discovery. The DNA hybridization event in which the probe, which is usually a single-stranded DNA (ssDNA) covalently immobilized on a functionalized surface, recognizes the complementary target and forms a stable duplex structure that is the basis of highly specific bio recognizing devices.

In this computational study, molecular modeling and Quantitative Structure Activity Relationship (QSAR) calculations were utilized at PM3 level in order to evaluate the interaction of aldehyde ssDNA on chitosan-functionalized silicon substrate and the biological activity of the proposed compounds. Molecular modeling of ssDNA 5’-(TTCA) attached on chitosan- functionalized silicon dioxide substrate was carried out. Molecular modeling and QSAR calculations were utilized at MM3 level in order to evaluate the interaction of target DNA on DNA probe on chitosan-functionalized silicon substrate through hydrogen bonding and the biological activity of the proposed compounds.

Keywords: DNA, PM3, QSAR, SiO2, hybridization and chitosan.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 5
Year: 2016
Page: [464 - 471]
Pages: 8
DOI: 10.2174/1573406412666151112124836
Price: $58

Article Metrics

PDF: 19
HTML: 3