Interactions of Non-Phosphorous Glycerolipids with DNA: Energetics, Molecular Docking and Topoisomerase I Attenuation

Author(s): Valery Y. Grinberg, Vladimir B. Tsvetkov, Alina A. Markova, Lyubov G. Dezhenkova, Tatiana V. Burova, Natalia V. Grinberg, Alexander S. Dubovik, Natalia V. Plyavnik, Alexander A. Shtil.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 16 , Issue 3 , 2016

Become EABM
Become Reviewer

Graphical Abstract:


The phosphorus-containing glycerolipid based antitumor drugs (edelfosine as a prototype) are currently in clinical trials. To avoid the use of potentially harmful phosphoric reagents in the preparation of biologically active glycerolipids, and to obtain the compounds without the phosphoester bond cleavable inside the cells, we developed the synthesis of non-phosphorous glycerolipids (NPGLs) with neutral or cationic polar ‘heads’. In this study, we analyzed the ability of novel NPGLs L1-L5 to interact with duplex DNA and interfere with the DNA modifying enzyme topoisomerase I (topo I). In cell-free systems, NPGLs formed highly affine complexes with DNA. Molecular docking revealed that NPGLs fitted very well into the DNA minor groove. Compounds L2 (with two long hydrophobic ‘tails’) and L4 (with ethylimidazolium cationic group), the most affine DNA binders, showed the best calculated energies of complex formation with DNA and topo I. The models demonstrated the binding of NPGLs to the topo I site known for interaction with conventional inhibitors. Each NPGL attenuated the topo I mediated unwinding of supercoiled DNA. Again, L2 and, to a lesser extent, L4 were the most potent topo I inhibitors. Thus, NPGLs with polar ‘heads’ emerge as a new class of DNA ligands and interfacial topo I antagonists.

Keywords: DNA, drug-target interaction, molecular modeling, non-phosphorous glycerolipids, topoisomerase I.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2016
Page: [335 - 346]
Pages: 12
DOI: 10.2174/1871520615666150929105907
Price: $58

Article Metrics

PDF: 30
PRC: 1