Poly(ADP-Ribose)Polymerase 1 (PARP-1) Activation and Ca2+ Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Channels in Post-Ischemic Brain Damage: New Therapeutic Opportunities?

Author(s): Elisabetta Gerace, Domenico E. Pellegrini-Giampietro, Flavio Moroni, Guido Mannaioni.

Journal Name: CNS & Neurological Disorders - Drug Targets

Volume 14 , Issue 5 , 2015

Submit Manuscript
Submit Proposal

Abstract:

A significant number of laboratories observed that poly (ADP-ribose) polymerase (PARP) inhibitors, administered a few hours after ischemic or traumatic brain injury, may drastically reduce the subsequent neurological damage. It has also been shown that PARP inhibitors, administered for 24 hours to rats with permanent middle cerebral artery occlusion (MCAO), may reduce the number of dying neurons for a long period after surgery, thus suggesting that these agents could reduce the delayed brain damage and the neurological and cognitive impairment (dementia) frequently observed a few months after a stroke. In organotypic hippocampal slices exposed to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG), an alkylating agent able to activate PARP, a selective and delayed degeneration of the CA1 pyramidal cells which was anatomically similar to that observed after a short period of oxygen and glucose deprivation (OGD) has been described. Biochemical and electrophysiological approaches showed that MNNG exposure caused an increased expression and function of the calcium permeable α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels in the CA1 but not in the CA3 hippocampal region. PARP inhibitors prevented this increase and reduced CA1 cell death. The AMPA receptor antagonist 2,3-dihydroxy-6- nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione or the selective Ca2+ permeable AMPA channel blocker 1-Naphthyl acetyl spermine (NASPM), also reduced the MNNG-induced CA1 pyramidal cell death. Since activation of PARP-1 facilitate the expression of Ca2+ permeable channels and the subsequent delayed cell death, PARP inhibitors administered a few hours after a stroke may not only reduce the early post-ischemic brain damage but also the late neuronal death frequently occurring after severe stroke.

Keywords: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, cell death, Dementia, Neuroprotection, Poly(ADP-ribose) polymerases, stroke.

Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 14
ISSUE: 5
Year: 2015
Page: [636 - 646]
Pages: 11
DOI: 10.2174/1871527314666150430162841
Price: $58

Article Metrics

PDF: 47