Current Gene Therapy

Ignacio Anegon
Director INSERM UMR 1064-Center for Research in Transplantation and Immunology
CHU de Nantes. 30, boulevard


Translate in Chinese

Foxf1 siRNA Delivery to Hepatic Stellate Cells by DBTC Lipoplex Formulations Ameliorates Fibrosis in Livers of Bile Duct Ligated Mice

Author(s): Kerstin Abshagen, Malte Brensel, Berit Genz, Kira Roth, Maria Thomas, Volker Fehring, Ute Schaeper, Brigitte Vollmar.


Activation of hepatic stellate cells (HSCs) is a key event in pathogenesis of liver fibrosis and represents an orchestral interplay of inhibiting and activating transcription factors like forkhead box f1 (Foxf1), being described to stimulate pro-fibrogenic genes in HSCs. Here, we evaluated a lipidbased liver-specific delivery system (DBTC) suitable to transfer Foxf1 siRNA specifically to HSCs and examined its antifibrotic potential on primary HSCs and LX-2 cells as well as in a murine model of bile duct ligation (BDL)-induced secondary cholestasis. Foxf1 silencing reduced proliferation capacity and attenuated contractility of HSCs. Systemic administration of DBTC-lipoplexes in mice was sufficient to specifically silence genes expressed in different liver cell types. Using intravital and immunofluorescence microscopy we confirmed the specific delivery of Cy3-labeled DBTC to the liver, and particularly to HSCs. Repeated treatment with DBTC-lipoplexes resulted in siRNA-mediated silencing of Foxf1 early after BDL and finally attenuated progression of the fibrotic process. Decreased HSC activation in-effect ameliorated liver injury as shown by substantial reduction of necrotic area and deposition of extracellular matrix. Our findings suggest that Foxf1 may serve as a target gene to disrupt progression of liver fibrosis and DBTC might provide a potentially feasible and effective tool for HSC-specific delivery of therapeutic RNA.

Keywords: Cholestasis, chronic liver disease, intravital microscopy, lipoplex, mouse, silencing.

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Year: 2015
Page: [215 - 227]
Pages: 13
DOI: 10.2174/1566523215666150126114634
Price: $58