Cardioprotection by Targeting the Pool of Resident and Extracardiac Progenitors

Author(s): Konrad Urbanek , Caterina Frati , Gallia Graiani , Denise Madeddu , Angela Falco , Stefano Cavalli , Bruno Lorusso , Andrea Gervasi , Lucia Prezioso , Monia Savi , Francesca Ferraro , Federica Galaverna , Pietro Rossetti , Costanza Annamaria Lagrasta , Fancesca Re , Eugenio Quaini , Francesco Rossi , Antonella De Angelis , Federico Quaini .

Journal Name: Current Drug Targets

Volume 16 , Issue 8 , 2015

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

The adult heart has the capacity to generate new myocytes that are markedly enhanced in acute and chronic heart failure of ischemic and non-ischemic origin. In addition, a pool of blood trafficking progenitor cells able to sense myocardial damage may home to the sites of injury participating to cardiac repair. This new view of myocardial biology leads to an expanding long-term research and therapeutic goals for cardioprotection. A fundamental concept to be analyzed is whether cardiac diseases are influenced by changes in the properties of tissue specific and circulating progenitors. Loss of self-renewal capacity, impaired growth or increased susceptibility to death may lead to a reduction of progenitors and leave myocardial damage unrepaired. Cardiac progenitors generate all myocardial cell lineages, thus impairment in their growth is expected to be critically involved in the structural and functional modifications of the heart. The fact that, in addition to well known effects of anthracyclines, also new drugs that target molecular pathways implicated in cell death and growth can be cardiotoxic further supports our hypothesis. Understanding the role of resident and extracardiac progenitors in the pathogenesis of cardiomyopathies of different etiology will provide not only a better comprehension of cardiac homeostasis but will also open new avenues for therapeutic interventions. The progress toward effective myocardial regeneration based on exploiting the self-renewal potential of the myocardium and the systemic pool of cardiogenic cells should advance the likelihood of efficient cardioprotection and restoration of cardiac function.

Keywords: Cardiac progenitors, cardioprotection, cardiotoxiciy, ischemic cardiomyopathy, regenerative medicine, stem cells.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 8
Year: 2015
Page: [884 - 894]
Pages: 11
DOI: 10.2174/1389450116666150126105002
Price: $58

Article Metrics

PDF: 23
HTML: 1