Current Drug Targets

Francis J. Castellino
Kleiderer-Pezold Professor of Biochemistry
Director, W.M. Keck Center for Transgene Research
Dean Emeritus, College of Science
230 Raclin-Carmichael Hall, University of Notre Dame
Notre Dame, IN 46556


Dipeptidyl Peptidase IV Inhibitors: A New Paradigm in Type 2 Diabetes Treatment

Author(s): Sridhara Janardhan and G. Narahari Sastry

Affiliation: Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad- 500 607, India.


Dipeptidyl peptidase IV (DPP4) is a promising target for the treatment of chronic metabolic type 2 diabetes mellitus (T2D). DPP4 is a highly specific serine protease involved in the regulation and cleavage of two incretin hormones, glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). These incretin hormones are released by the gastrointestinal tract in response to ingestion of food and stimulate insulin secretion and thereby regulate glucose homeostasis with a low risk of hypoglycemia and glucagon secretion. Currently different chemical classes of DPP4 inhibitors are in last-stage of clinical trials and few of them such as sitagliptin, vildagliptin, saxagliptin alogliptin and linagliptin have already been successfully released into market. These drugs have been approved as either monotherapy or combination therapy with other oral hypoglycemic agents such as metformin, pioglitazone, sulfonylurea, glyburide and glibenclamide for the treatment of T2D. Though several clinical trial compounds were discontinued because of severe adverse toxic effects that are associated with other prolyldipeptidases include DPP8 and DPP9. The current review provides an overview of DPP4 and its inhibitors with emphasis on the structure, expression, activity, selectivity and pharmacokinetics information. This review further dwells upon the issues relating to the rational design and development of selective DPP4 inhibitors for the treatment of T2D.

Keywords: Activity and selectivity, DPP4, DPP8, DPP9, GIP, GLP-1, T2D.

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Page: [600 - 621]
Pages: 22
DOI: 10.2174/1389450115666140311102638