Current Pharmaceutical Design

William A. Banks  
VAPSHCS/GRECC S-182
Building 1, Room 810A
1600 S. Columbian Way
Seattle, WA 98108
USA

Back

Role of Bone-Type Tissue-Nonspecific Alkaline Phosphatase and PHOSPO1 in Vascular Calcification

Author(s): Yuri V. Bobryshev, Alexander N. Orekhov, Igor Sobenin, Dimitry A. Chistiakov.

Abstract:

Matrix vesicle (MV)-mediated mineralization is important for bone ossification. However, under certain circumstances such as atherosclerosis, mineralization may occur in the arterial wall. Bone-type tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes inorganic pyrophosphate (PPi) and generates inorganic phosphate (Pi), which is essential for MV-mediated hydroxyapatite formation. MVs contain another phosphatase, PHOSPHO1, that serves as an additional supplier of Pi. Activation of bone-type tissue-nonspecific alkaline phosphatase (TNAP) in vascular smooth muscle cells precedes vascular calcification. By degrading PPi, TNAP plays a procalcific role changing the Pi/PPi ratio toward mineralization. A pathologic role of bone-type TNAP and PHOSPHO1 make them to be attractive targets for cardiovascular therapy.

Keywords: Arterial calcification, atherosclerosis, vascular smooth muscle cells, mineralizing matrix vesicles, bone-type tissue-nonspecific alkaline phosphatise, PHOSPO1.

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

VOLUME: 20
ISSUE: 37
Year: 2014
Page: [5821 - 5828]
Pages: 8
DOI: 10.2174/1381612820666140212193011
Price: $58