Letters in Drug Design & Discovery

Atta-ur-Rahman  , FRS
Honorary Life Fellow
Kings College
University of Cambridge
Email: lddd@benthamscience.org


Analysis of Proteasome Inhibition Prediction Using Atom-Based Quadratic Indices Enhanced by Machine Learning Classification Techniques

Author(s): Gerardo M. Casanola-Martin, Huong Le-Thi-Thu, Yovani Marrero-Ponce, Juan A Castillo- Garit, Francisco Torrens, Facundo Perez-Gimenez, Concepcion Abad.

Graphical Abstract:


In this work the use of 2D atom-based quadratic indices is shown in the prediction of proteasome inhibition. Machine learning approaches such as support vector machine, artificial neural network, random forest and k-nearest neighbor were used as main techniques to carry out two quantitative structure-activity relationship (QSAR) studies. First, a database consisting of active and non-active classes was predicted with model performances above 85% and 80% in learning and test series, respectively. Second a regression-based model was developed which allow to estimate the EC50 with Q2 values of 52.89 and 50.19, in training and prediction sets, respectively, were developed. These results provided new approaches on proteasome inhibitor identification encouraged by virtual screenings procedures.

Keywords: Atom-based quadratic index, Classification and regression model, Machine learning, Proteasome inhibition, QSAR, TOMOCOMD-CARDD software.

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Page: [705 - 711]
Pages: 7
DOI: 10.2174/1570180811666140122001144
Price: $58