The Impact of Mitochondrial DNA and Nuclear Genes Related to Mitochondrial Functioning on the Risk of Parkinson’s Disease

Author(s): Katarzyna Gaweda-Walerych, Cezary Zekanowski.

Journal Name:Current Genomics

Volume 14 , Issue 8 , 2013

Abstract:

Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD) pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3, POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between mitochondrial and nuclear genetic variants and related proteins are discussed.

Keywords: Association studies, Mitochondrial dysfunction, mtDNA haplogroups, Nuclear genes, Parkinson’s disease, Polymorphism.

Rights & PermissionsPrintExport

Article Details

VOLUME: 14
ISSUE: 8
Year: 2013
Page: [543 - 559]
Pages: 17
DOI: 10.2174/1389202914666131210211033
Price: $58