Advances in Organic Synthesis

Volume: 6

Indexed in: EBSCO, Ulrich's Periodicals Directory

Advances in Organic Synthesis is a book series devoted to the latest advances in synthetic approaches towards challenging structures. It presents comprehensive articles written by eminent authorities ...
[view complete introduction]

US $
30

*(Excluding Mailing and Handling)



Chiral Perazamacrocycles: Synthesis and Applications. Part 1

Pp. 115-166 (52)

Diego Savoia and Andrea Gualandi

Abstract

Chiral non-racemic perazamacrocyles containing three or more nitrogen atoms in the form of different functions (amine, amide, imine) are prepared from optically active amines, diamines, α-aminoacids, and their derivatives, by properly selected methodologies. The many applications of these optically pure perazamacrocycles rely on the basic and/or hydrogen bond donor properties of the nitrogen functions and include metal ions coordination, supramolecular chemistry, material science, molecular and enantioselective recognition, and asymmetric catalysis. Part 1 describes the preparation of polyamino, poly(amino-amido), polyamido macrocycles by procedures involving mainly nucleophilic substitution and acylation reactions, but also ring closing metathesis, multicomponent and click reactions in the cyclization step.

Keywords:

Acylic nucleophilic substitution, aldol condensation, alkyne-azide cycloaddition (click reaction), amides, amines, asymmetric synthesis, atkinsrichman procedure, aziridine ring opening, bridged macropolycycles, chiral stationary phase, chiral perazamacrocycle, cyclam, cyclization, cyclophane, cyclopolypeptide, enantioselective catalysis, enantioselective recognition, epoxidation, ex-chiral pool synthesis, guanidinium macrocycles, henry reaction, imines, lactamization, metal complexes, metal ion coordination, mitsunobu reaction, molecular knot, molecular recognition, multicomponent reaction, nitrogen ligands, nucleophilic substitution, on-resin synthesis, perazamacrocycles, pseudopolypeptide, radiopharmaceutical, receptor (macrocyclic), reductive coupling, reduction, ring closing metathesis, ring closure, ring opening, superoxide dismutase mimics, supramolecular chemistry, ugi reaction.

Affiliation:

Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126 Bologna, Italy.