Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Molecular Mechanisms and Modulation of Key Pathways Underlying the Synergistic Interaction of Sorafenib with Erlotinib in Non-Small-Cell-Lung Cancer (NSCLC) Cells

Author(s): E. Giovannetti, M. Labots, H. Dekker, E. Galvani, J.S.W. Lind, R. Sciarrillo, R. Honeywell, E.F. Smit, H.M. Verheul and G.J. Peters

Volume 19, Issue 5, 2013

Page: [927 - 939] Pages: 13

DOI: 10.2174/1381612811306050927

Abstract

Combination of drugs with different targets is a logical approach to overcome multilevel cross-stimulation among key pathways in NSCLC progression such as EGFR, K-Ras and VEGFR. The sorafenib-erlotinib combination showed clinical activity and acceptable safety. Therefore, we evaluated mechanisms underlying sorafenib-erlotinib interaction in seven NSCLC cell lines selected for their heterogeneous pattern of EGFR and Raf-kinase-inhibitor protein (RKIP) expression, and EGFR/K-Ras mutations. Pharmacologic interaction was studied using MTT/SRB assays and the combination index (CI) method, while effects on EGFR, Erk1/2 and Akt phosphorylation, cell cycle and apoptosis were studied with western-blot, ELISA, and flow cytometry. Intracellular drug concentrations were measured with LC-MS/MS, whereas kinase activity profiles were generated on tyrosine kinase peptide substrate arrays.

Synergism was detected in all cell lines, with CIs<0.6 in K-Ras mutated A549, SW1573 and H460, as well as in H1975 (EGFR-T790M) cells. Sorafenib slowed cell cycle progression and induced apoptosis, which was significantly increased in the combination. Moreover, sorafenib reduced Akt/ERK phosphorylation in erlotinib-resistant cells, associated with significant RKIP up-regulation. No direct drug interaction was detected by LC-MS/MS measurement, while lysates from A549 and H1975 cells exposed to erlotinib+sorafenib showed a significant inhibition in the phosphorylation of 16 overlapping peptides, including sites from RAF, VEGFR2, PDGFR, CDK2 and SRC, suggesting new markers to identify NSCLC patients who are likely to respond to this treatment.

In conclusion, several mechanisms, including apoptosis-induction, modulation of expression/phosphorylation of RKIP and crucial kinases contribute to erlotinib-sorafenib synergistic interaction and should be evaluated in future trials for the rational development of this combination in NSCLC.

Keywords: Erlotinib, sorafenib, Non-Small-Cell-Lung Cancer (NSCLC), pharmacological interaction, apoptosis induction, RKIP, kinase activity profiling, drugs, cross-stimulation, cell lines


© 2024 Bentham Science Publishers | Privacy Policy