Current Biotechnology

Pabulo Henrique Rampelotto  
Center of Biotechnology and PPGBCM
Federal University of Rio Grande do Sul
Porto Alegre, RS


An Innovative Approach to Immobilize Lipase onto Natural Fiber and its Application for the Synthesis of 2-Octyl Ferulate in an Organic Medium

Author(s): Ashok Kumar, Shamsher S. Kanwar.


Lipase catalysis plays a vital role in the synthesis of a variety of compounds of commercial value in food, pharmaceutical as well as in detergent industry. In the present study a commercial lipase, Lipolase T20 was immobilized onto natural fibers of dried coconut fruit by incubating the fiber’s bunch in the enzyme solution for 12 h at 8oC. The fiberbound lipase was thereafter treated with 2% (v/v) glutaraldehyde. The fiber-immobilized biocatalyst was optimally active at pH 8.0 and at a temperature of 55oC. The fiber-bound lipase showed maximum hydrolytic activity towards pnitrophenyl palmitate. Among various non-ionic detergents, the exposure to Tween-60 (a non-ionic detergent) enhanced the activity of fiber-bound lipase towards the hydrolysis of p-nitrophenyl palmitate (p-NPP). Among various selected salt ions (1 mM), Al3+, Zn2+, Ca2+, Cu2+ and Fe2+ ions promoted, while Pb2+, Na+, Mn2+ and NH4 + ions decreased the hydrolytic activity of fiber-bound lipase. The immobilized lipase retained more than 45% of its original activity after 5th repetitive cycle of hydrolysis. The immobilized lipase also successfully achieved the esterification of 2-octanol (75 mM) and ferulic acid (100 mM) in DMSO in 3 h at 55oC under shaking at180 rpm.

Keywords: Immobilization, natural fibers, glutaraldehyde treatment, cross-linking, 2-octanol, ferulic acid, 2-octyl ferulate, Lipases, purification, stearic hindrance, UVB, UVA, antioxidants, cross-linking, hydrophobic interaction

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Year: 2012
Page: [241 - 248]
Pages: 8
DOI: 10.2174/2211550111201030241
Price: $58